

Welcome to rumps

rumps is...

Ridiculously Uncomplicated Mac os x Python Statusbar apps!

rumps exposes Objective-C classes as Python classes and functions which greatly simplifies the process of creating a statusbar application.

Say you have a Python program and want to create a relatively simple interface for end user interaction on a Mac. There are a number of GUI tools available to Python programmers (PyQt, Tkinter, PyGTK, WxPython, etc.) but most are overkill if you just want to expose a few configuration options or an execution switch.

If all you want is a statusbar app, rumps makes it easy.

GitHub project: https://github.com/jaredks/rumps

Contents:

	Examples
	Simple subclass structure

	Decorating any functions

	New features in 0.2.0

	Creating Standalone Applications

	Debugging Your Application

	rumps Classes
	App

	MenuItem

	Window

	Response

	Timer

	rumps Functions
	notifications

	clicked

	timer

	timers

	application_support

	notification

	alert

	debug_mode

	quit_application

Indices and tables

	Index

	Module Index

	Search Page

Examples

Sometimes the best way to learn something is by example. Form your own application based on some of these samples.

Simple subclass structure

Just a straightforward application,

import rumps

class AwesomeStatusBarApp(rumps.App):
 def __init__(self):
 super(AwesomeStatusBarApp, self).__init__("Awesome App")
 self.menu = ["Preferences", "Silly button", "Say hi"]

 @rumps.clicked("Preferences")
 def prefs(self, _):
 rumps.alert("jk! no preferences available!")

 @rumps.clicked("Silly button")
 def onoff(self, sender):
 sender.state = not sender.state

 @rumps.clicked("Say hi")
 def sayhi(self, _):
 rumps.notification("Awesome title", "amazing subtitle", "hi!!1")

if __name__ == "__main__":
 AwesomeStatusBarApp().run()

Decorating any functions

The following code demonstrates how you can decorate functions with rumps.clicked() whether or not they are inside a subclass of rumps.App. The parameter sender, the rumps.MenuItem object, is correctly passed to both functions even though button needs an instance of SomeApp as its self parameter.

Usually functions registered as callbacks should accept one and only one argument but an App subclass is viewed as a special case as its use can provide a simple and pythonic way to implement the logic behind an application.

from rumps import *

@clicked('Testing')
def tester(sender):
 sender.state = not sender.state

class SomeApp(rumps.App):
 def __init__(self):
 super(SomeApp, self).__init__(type(self).__name__, menu=['On', 'Testing'])
 rumps.debug_mode(True)

 @clicked('On')
 def button(self, sender):
 sender.title = 'Off' if sender.title == 'On' else 'On'
 Window("I can't think of a good example app...").run()

if __name__ == "__main__":
 SomeApp().run()

New features in 0.2.0

Menu items can be disabled (greyed out) by passing None to rumps.MenuItem.set_callback(). rumps.alert() no longer requires title (will use a default localized string) and allows for custom cancel button text. The new parameter quit_button for rumps.App allows for custom quit button text or removal of the quit button entirely by passing None.

Warning

By setting rumps.App.quit_button to None you must include another way to quit the application by somehow calling rumps.quit_application() otherwise you will have to force quit.

import rumps

rumps.debug_mode(True)

@rumps.clicked('Print Something')
def print_something(_):
 rumps.alert(message='something', ok='YES!', cancel='NO!')

@rumps.clicked('On/Off Test')
def on_off_test(_):
 print_button = app.menu['Print Something']
 if print_button.callback is None:
 print_button.set_callback(print_something)
 else:
 print_button.set_callback(None)

@rumps.clicked('Clean Quit')
def clean_up_before_quit(_):
 print 'execute clean up code'
 rumps.quit_application()

app = rumps.App('Hallo Thar', menu=['Print Something', 'On/Off Test', 'Clean Quit'], quit_button=None)
app.run()

Creating Standalone Applications

If you want to create your own bundled .app you need to download py2app: https://pythonhosted.org/py2app/

For creating standalone apps, just make sure to include rumps in the packages list. Most simple statusbar-based
apps are just “background” apps (no icon in the dock; inability to tab to the application) so it is likely that you
would want to set 'LSUIElement' to True. A basic setup.py would look like,

from setuptools import setup

APP = ['example_class.py']
DATA_FILES = []
OPTIONS = {
 'argv_emulation': True,
 'plist': {
 'LSUIElement': True,
 },
 'packages': ['rumps'],
}

setup(
 app=APP,
 data_files=DATA_FILES,
 options={'py2app': OPTIONS},
 setup_requires=['py2app'],
)

With this you can then create a standalone,

python setup.py py2app

Debugging Your Application

When writing your application you will want to turn on debugging mode.

import rumps
rumps.debug_mode(True)

If you are running your program from the interpreter, you should see the informational messages.

python {your app name}.py

If testing the .app generated using py2app, to be able to see these messages you must not,

open {your app name}.app

but instead run the executable. While within the directory containing the .app,

./{your app name}.app/Contents/MacOS/{your app name}

And, by default, your .app will be in dist folder after running python setup.py py2app. So of course that would then be,

./dist/{your app name}.app/Contents/MacOS/{your app name}

rumps Classes

	App

	MenuItem

	Window

	Response

	Timer

App

	
class rumps.App(name, title=None, icon=None, template=None, menu=None, quit_button='Quit')

	Represents the statusbar application.

Provides a simple and pythonic interface for all those long and ugly PyObjC calls. rumps.App may be
subclassed so that the application logic can be encapsulated within a class. Alternatively, an App can be
instantiated and the various callback functions can exist at module level.

Changed in version 0.2.0: name parameter must be a string and title must be either a string or None. quit_button parameter added.

	Parameters:	
	name – the name of the application.

	title – text that will be displayed for the application in the statusbar.

	icon – file path to the icon that will be displayed for the application in the statusbar.

	menu – an iterable of Python objects or pairs of objects that will be converted into the main menu for the
application. Parsing is implemented by calling rumps.MenuItem.update().

	quit_button – the quit application menu item within the main menu. If None, the default quit button will
not be added.

	
icon

	A path to an image representing the icon that will be displayed for the application in the statusbar.
Can be None in which case the text from title will be used.

Changed in version 0.2.0: If the icon is set to an image then changed to None, it will correctly be removed.

	
menu

	Represents the main menu of the statusbar application. Setting menu works by calling
rumps.MenuItem.update().

	
name

	The name of the application. Determines the application support folder name. Will also serve as the title
text of the application if title is not set.

	
open(*args)

	Open a file within the application support folder for this application.

app = App('Cool App')
with app.open('data.json') as f:
 pass

Is a shortcut for,

app = App('Cool App')
filename = os.path.join(application_support(app.name), 'data.json')
with open(filename) as f:
 pass

	
quit_button

	The quit application menu item within the main menu. This is a special rumps.MenuItem object that
will both replace any function callback with rumps.quit_application() and add itself to the end of the
main menu when rumps.App.run() is called. If set to None, the default quit button will not be added.

Warning

If set to None, some other menu item should call rumps.quit_application() so that the
application can exit gracefully.

New in version 0.2.0.

	
run(**options)

	Performs various setup tasks including creating the underlying Objective-C application, starting the timers,
and registering callback functions for click events. Then starts the application run loop.

Changed in version 0.2.1: Accepts debug keyword argument.

	Parameters:	debug – determines if application should log information useful for debugging. Same effect as calling
rumps.debug_mode().

	
template

	Template mode for an icon. If set to None, the current icon (if any) is displayed as a color icon.
If set to True, template mode is enabled and the icon will be displayed correctly in dark menu bar mode.

	
title

	The text that will be displayed for the application in the statusbar. Can be None in which case the icon
will be used or, if there is no icon set the application text will fallback on the application name.

Changed in version 0.2.0: If the title is set then changed to None, it will correctly be removed. Must be either a string or
None.

MenuItem

	
class rumps.MenuItem(title, callback=None, key=None, icon=None, dimensions=None, template=None)

	Represents an item within the application’s menu.

A rumps.MenuItem is a button inside a menu but it can also serve as a menu itself whose elements are
other MenuItem instances.

Encapsulates and abstracts Objective-C NSMenuItem (and possibly a corresponding NSMenu as a submenu).

A couple of important notes:

	A new MenuItem instance can be created from any object with a string representation.

	Attempting to create a MenuItem by passing an existing MenuItem instance as the first parameter will not
result in a new instance but will instead return the existing instance.

Remembers the order of items added to menu and has constant time lookup. Can insert new MenuItem object before or
after other specified ones.

Note

When adding a MenuItem instance to a menu, the value of title at that time will serve as its key for
lookup performed on menus even if the title changes during program execution.

	Parameters:	
	title – the name of this menu item. If not a string, will use the string representation of the object.

	callback – the function serving as callback for when a click event occurs on this menu item.

	key – the key shortcut to click this menu item. Must be a string or None.

	icon – a path to an image. If set to None, the current image (if any) is removed.

	dimensions – a sequence of numbers whose length is two, specifying the dimensions of the icon.

	template – a boolean, specifying template mode for a given icon (proper b/w display in dark menu bar)

	
d[key]

	Return the item of d with key key. Raises a KeyError if key is not in the map.

	
d[key] = value

	Set d[key] to value if key does not exist in d. value will be converted to a MenuItem object if not one already.

	
del d[key]

	Remove d[key] from d. Raises a KeyError if key is not in the map.

	
add(menuitem)

	Adds the object to the menu as a rumps.MenuItem using the rumps.MenuItem.title as the
key. menuitem will be converted to a MenuItem object if not one already.

	
callback

	Return the current callback function.

New in version 0.2.0.

	
clear()

	Remove all MenuItem objects from within the menu of this MenuItem.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
has_key(k) → True if D has a key k, else False

	

	
icon

	The path to an image displayed next to the text for this menu item. If set to None, the current image
(if any) is removed.

Changed in version 0.2.0: Setting icon to None after setting it to an image will correctly remove the icon. Returns the path to an
image rather than exposing a PyObjC class.

	
insert_after(existing_key, menuitem)

	Insert a rumps.MenuItem in the menu after the existing_key.

	Parameters:	
	existing_key – a string key for an existing MenuItem value.

	menuitem – an object to be added. It will be converted to a MenuItem if not one already.

	
insert_before(existing_key, menuitem)

	Insert a rumps.MenuItem in the menu before the existing_key.

	Parameters:	
	existing_key – a string key for an existing MenuItem value.

	menuitem – an object to be added. It will be converted to a MenuItem if not one already.

	
items() → list of (key, value) pairs in od

	

	
iteritems()

	od.iteritems -> an iterator over the (key, value) pairs in od

	
iterkeys() → an iterator over the keys in od

	

	
itervalues()

	od.itervalues -> an iterator over the values in od

	
key

	The key shortcut to click this menu item.

New in version 0.2.0.

	
keys() → list of keys in od

	

	
pop(k[, d]) → v, remove specified key and return the corresponding

	value. If key is not found, d is returned if given, otherwise KeyError
is raised.

	
popitem() → (k, v), return and remove a (key, value) pair.

	Pairs are returned in LIFO order if last is true or FIFO order if false.

	
set_callback(callback, key=None)

	Set the function serving as callback for when a click event occurs on this menu item. When callback is
None, it will disable the callback function and grey out the menu item. If key is a string, set as the
key shortcut. If it is None, no adjustment will be made to the current key shortcut.

Changed in version 0.2.0: Allowed passing None as both callback and key. Additionally, passing a key that is neither a
string nor None will result in a standard TypeError rather than various, uninformative PyObjC
internal errors depending on the object.

	Parameters:	
	callback – the function to be called when the user clicks on this menu item.

	key – the key shortcut to click this menu item.

	
set_icon(icon_path, dimensions=None, template=None)

	Sets the icon displayed next to the text for this menu item. If set to None, the current image (if any)
is removed. Can optionally supply dimensions.

Changed in version 0.2.0: Setting icon to None after setting it to an image will correctly remove the icon. Passing dimensions
a sequence whose length is not two will no longer silently error.

	Parameters:	
	icon_path – a file path to an image.

	dimensions – a sequence of numbers whose length is two.

	template – a boolean who defines the template mode for the icon.

	
setdefault(k[, d]) → od.get(k,d), also set od[k]=d if k not in od

	

	
state

	The state of the menu item. The “on” state is symbolized by a check mark. The “mixed” state is symbolized
by a dash.

Setting states

	State
	Number

	ON
	1

	OFF
	0

	MIXED
	-1

	
template

	Template mode for an icon. If set to None, the current icon (if any) is displayed as a color icon.
If set to True, template mode is enabled and the icon will be displayed correctly in dark menu bar mode.

	
title

	The text displayed in a menu for this menu item. If not a string, will use the string representation of the
object.

	
update(iterable, **kwargs)

	Update with objects from iterable after each is converted to a rumps.MenuItem, ignoring
existing keys. This update is a bit different from the usual dict.update method. It works recursively and
will parse a variety of Python containers and objects, creating MenuItem object and submenus as necessary.

If the iterable is an instance of rumps.MenuItem, then add to the menu.

Otherwise, for each element in the iterable,

	if the element is a string or is not an iterable itself, it will be converted to a
rumps.MenuItem and the key will be its string representation.

	if the element is a rumps.MenuItem already, it will remain the same and the key will be its
rumps.MenuItem.title attribute.

	if the element is an iterable having a length of 2, the first value will be converted to a
rumps.MenuItem and the second will act as the submenu for that MenuItem

	if the element is an iterable having a length of anything other than 2, a ValueError will be raised

	if the element is a mapping, each key-value pair will act as an iterable having a length of 2

	
values() → list of values in od

	

	
viewitems() → a set-like object providing a view on od's items

	

	
viewkeys() → a set-like object providing a view on od's keys

	

	
viewvalues() → an object providing a view on od's values

	

Window

	
class rumps.Window(message='', title='', default_text='', ok=None, cancel=None, dimensions=(320, 160))

	Generate a window to consume user input in the form of both text and button clicked.

Changed in version 0.2.0: Providing a cancel string will set the button text rather than only using text “Cancel”. message is no
longer a required parameter.

	Parameters:	
	message – the text positioned below the title in smaller font. If not a string, will use the string
representation of the object.

	title – the text positioned at the top of the window in larger font. If not a string, will use the string
representation of the object.

	default_text – the text within the editable textbox. If not a string, will use the string representation of
the object.

	ok – the text for the “ok” button. Must be either a string or None. If None, a default
localized button title will be used.

	cancel – the text for the “cancel” button. If a string, the button will have that text. If cancel
evaluates to True, will create a button with text “Cancel”. Otherwise, this button will not be
created.

	dimensions – the size of the editable textbox. Must be sequence with a length of 2.

	
add_button(name)

	Create a new button.

Changed in version 0.2.0: The name parameter is required to be a string.

	Parameters:	name – the text for a new button. Must be a string.

	
add_buttons(iterable=None, *args)

	Create multiple new buttons.

Changed in version 0.2.0: Since each element is passed to rumps.Window.add_button(), they must be strings.

	
default_text

	The text within the editable textbox. An example would be

“Type your message here.”

If not a string, will use the string representation of the object.

	
icon

	The path to an image displayed for this window. If set to None, will default to the icon for the
application using rumps.App.icon.

Changed in version 0.2.0: If the icon is set to an image then changed to None, it will correctly be changed to the application
icon.

	
message

	The text positioned below the title in smaller font. If not a string, will use the string
representation of the object.

	
run()

	Launch the window. rumps.Window instances can be reused to retrieve user input as many times as
needed.

	Returns:	a rumps.rumps.Response object that contains the text and the button clicked as an integer.

	
title

	The text positioned at the top of the window in larger font. If not a string, will use the string
representation of the object.

Response

	
class rumps.rumps.Response(clicked, text)

	Holds information from user interaction with a rumps.Window after it has been closed.

	
clicked

	Return a number representing the button pressed by the user.

The “ok” button will return 1 and the “cancel” button will return 0. This makes it convenient to write
a conditional like,

if response.clicked:
 do_thing_for_ok_pressed()
else:
 do_thing_for_cancel_pressed()

Where response is an instance of rumps.rumps.Response.

Additional buttons added using methods rumps.Window.add_button() and rumps.Window.add_buttons()
will return 2, 3, ... in the order they were added.

	
text

	Return the text collected from the user.

Timer

	
class rumps.Timer(callback, interval)

	Python abstraction of an Objective-C event timer in a new thread for application. Controls the callback function,
interval, and starting/stopping the run loop.

Changed in version 0.2.0: Method __call__ removed.

	Parameters:	
	callback – Function that should be called every interval seconds. It will be passed this
rumps.Timer object as its only parameter.

	interval – The time in seconds to wait before calling the callback function.

	
callback

	The current function specified as the callback.

	
interval

	The time in seconds to wait before calling the callback function.

	
is_alive()

	Whether the timer thread loop is currently running.

	
set_callback(callback)

	Set the function that should be called every interval seconds. It will be passed this
rumps.Timer object as its only parameter.

	
start()

	Start the timer thread loop.

	
stop()

	Stop the timer thread loop.

rumps Functions

	notifications

	clicked

	timer

	timers

	application_support

	notification

	alert

	debug_mode

	quit_application

notifications

	
rumps.notifications(f)

	Decorator for registering a function to serve as a “notification center” for the application. This function will
receive the data associated with an incoming macOS notification sent using rumps.notification(). This occurs
whenever the user clicks on a notification for this application in the macOS Notification Center.

@rumps.notifications
def notification_center(info):
 if 'unix' in info:
 print 'i know this'

clicked

	
rumps.clicked(*args, **options)

	Decorator for registering a function as a callback for a click action on a rumps.MenuItem within the
application. The passed args must specify an existing path in the main menu. The rumps.MenuItem
instance at the end of that path will have its rumps.MenuItem.set_callback() method called, passing in the
decorated function.

Changed in version 0.2.1: Accepts key keyword argument.

@rumps.clicked('Animal', 'Dog', 'Corgi')
def corgi_button(sender):
 import subprocess
 subprocess.call(['say', '"corgis are the cutest"'])

	Parameters:	
	args – a series of strings representing the path to a rumps.MenuItem in the main menu of the
application.

	key – a string representing the key shortcut as an alternative means of clicking the menu item.

timer

	
rumps.timer(interval)

	Decorator for registering a function as a callback in a new thread. The function will be repeatedly called every
interval seconds. This decorator accomplishes the same thing as creating a rumps.Timer object by using
the decorated function and interval as parameters and starting it on application launch.

@rumps.timer(2)
def repeating_function(sender):
 print 'hi'

	Parameters:	interval – a number representing the time in seconds before the decorated function should be called.

timers

	
rumps.timers()

	Return a list of all rumps.Timer objects. These can be active or inactive.

application_support

	
rumps.application_support(name)

	Return the application support folder path for the given name, creating it if it doesn’t exist.

notification

	
rumps.notification(title, subtitle, message, data=None, sound=True)

	Send a notification to Notification Center (OS X 10.8+). If running on a version of macOS that does not
support notifications, a RuntimeError will be raised. Apple says,

“The userInfo content must be of reasonable serialized size (less than 1k) or an exception will be thrown.”

So don’t do that!

	Parameters:	
	title – text in a larger font.

	subtitle – text in a smaller font below the title.

	message – text representing the body of the notification below the subtitle.

	data – will be passed to the application’s “notification center” (see rumps.notifications()) when this
notification is clicked.

	sound – whether the notification should make a noise when it arrives.

alert

	
rumps.alert(title=None, message='', ok=None, cancel=None)

	Generate a simple alert window.

Changed in version 0.2.0: Providing a cancel string will set the button text rather than only using text “Cancel”. title is no longer
a required parameter.

	Parameters:	
	title – the text positioned at the top of the window in larger font. If None, a default localized title
is used. If not None or a string, will use the string representation of the object.

	message – the text positioned below the title in smaller font. If not a string, will use the string
representation of the object.

	ok – the text for the “ok” button. Must be either a string or None. If None, a default
localized button title will be used.

	cancel – the text for the “cancel” button. If a string, the button will have that text. If cancel
evaluates to True, will create a button with text “Cancel”. Otherwise, this button will not be
created.

	Returns:	a number representing the button pressed. The “ok” button is 1 and “cancel” is 0.

debug_mode

	
rumps.debug_mode(choice)

	Enable/disable printing helpful information for debugging the program. Default is off.

quit_application

	
rumps.quit_application(sender=None)

	Quit the application. Some menu item should call this function so that the application can exit gracefully.

Index

 A
 | C
 | D
 | G
 | H
 | I
 | K
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add() (rumps.MenuItem method)

 	add_button() (rumps.Window method)

 	add_buttons() (rumps.Window method)

 	
 	alert() (in module rumps)

 	App (class in rumps)

 	application_support() (in module rumps)

C

 	
 	callback (rumps.MenuItem attribute)

 	(rumps.Timer attribute)

 	
 	clear() (rumps.MenuItem method)

 	clicked (rumps.rumps.Response attribute)

 	clicked() (in module rumps)

D

 	
 	debug_mode() (in module rumps)

 	
 	default_text (rumps.Window attribute)

G

 	
 	get() (rumps.MenuItem method)

H

 	
 	has_key() (rumps.MenuItem method)

I

 	
 	icon (rumps.App attribute)

 	(rumps.MenuItem attribute)

 	(rumps.Window attribute)

 	insert_after() (rumps.MenuItem method)

 	insert_before() (rumps.MenuItem method)

 	
 	interval (rumps.Timer attribute)

 	is_alive() (rumps.Timer method)

 	items() (rumps.MenuItem method)

 	iteritems() (rumps.MenuItem method)

 	iterkeys() (rumps.MenuItem method)

 	itervalues() (rumps.MenuItem method)

K

 	
 	key (rumps.MenuItem attribute)

 	
 	keys() (rumps.MenuItem method)

M

 	
 	menu (rumps.App attribute)

 	
 	MenuItem (class in rumps)

 	message (rumps.Window attribute)

N

 	
 	name (rumps.App attribute)

 	
 	notification() (in module rumps)

 	notifications() (in module rumps)

O

 	
 	open() (rumps.App method)

P

 	
 	pop() (rumps.MenuItem method)

 	
 	popitem() (rumps.MenuItem method)

Q

 	
 	quit_application() (in module rumps)

 	
 	quit_button (rumps.App attribute)

R

 	
 	Response (class in rumps.rumps)

 	
 	run() (rumps.App method)

 	(rumps.Window method)

S

 	
 	set_callback() (rumps.MenuItem method)

 	(rumps.Timer method)

 	set_icon() (rumps.MenuItem method)

 	
 	setdefault() (rumps.MenuItem method)

 	start() (rumps.Timer method)

 	state (rumps.MenuItem attribute)

 	stop() (rumps.Timer method)

T

 	
 	template (rumps.App attribute)

 	(rumps.MenuItem attribute)

 	text (rumps.rumps.Response attribute)

 	Timer (class in rumps)

 	
 	timer() (in module rumps)

 	timers() (in module rumps)

 	title (rumps.App attribute)

 	(rumps.MenuItem attribute)

 	(rumps.Window attribute)

U

 	
 	update() (rumps.MenuItem method)

V

 	
 	values() (rumps.MenuItem method)

 	viewitems() (rumps.MenuItem method)

 	
 	viewkeys() (rumps.MenuItem method)

 	viewvalues() (rumps.MenuItem method)

W

 	
 	Window (class in rumps)

 _static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/down.png

_static/up.png

nav.xhtml

 Table of Contents

 		Welcome to rumps

 		Examples

 		Simple subclass structure

 		Decorating any functions

 		New features in 0.2.0

 		Creating Standalone Applications

 		Debugging Your Application

 		rumps Classes

 		App

 		MenuItem

 		Window

 		Response

 		Timer

 		rumps Functions

 		notifications

 		clicked

 		timer

 		timers

 		application_support

 		notification

 		alert

 		debug_mode

 		quit_application

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

